If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x^2-62x-72=0
a = 9; b = -62; c = -72;
Δ = b2-4ac
Δ = -622-4·9·(-72)
Δ = 6436
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6436}=\sqrt{4*1609}=\sqrt{4}*\sqrt{1609}=2\sqrt{1609}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-62)-2\sqrt{1609}}{2*9}=\frac{62-2\sqrt{1609}}{18} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-62)+2\sqrt{1609}}{2*9}=\frac{62+2\sqrt{1609}}{18} $
| 4x-13=6x-39 | | x+5x=149 | | c^2+15c+42=c-7 | | -6y-8+5y=17 | | 6+10x=11x | | 24x-56=-6x-42+4 | | 15w+2w-9=5w-27 | | -6y-8+5y=27 | | x/8-1/4=40 | | -8=4w+24 | | 6m+9m=m-12-7+19 | | |5+4c|-12=-10 | | 12n=18 | | -5x^2+19x+4=0 | | -8=28w+24 | | 4x-2+x=3x+8+3x | | 20=x+5x3 | | 12/n=18 | | 5-m/8=11 | | 14=-2/5c | | -8-5(1+2b)=-26 | | c^2-15c+64=c | | 10=a/5-9 | | 34=-5-6t+3 | | c^2-15c+64=0 | | 5/7m-1/7=1/42 | | 6y-Z=8 | | 25x+20-120=0 | | 80+6x=145-13x | | -2.5w=8 | | (X-4)x+3)=0 | | 24-8s=-5(2s+6) |